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Abstract

The temporal evolution of buoyancy-driven convection in an initially quiescent and stably-stratified fluid layer confined between two
horizontal plates is investigated theoretically. After the temperature of the bottom plate is increased suddenly to a higher one, buoyancy-
driven convection appears at a certain time. In order to trace thedelimhe-dependent thermal behavior, the Boussinesq equations are
solved numerically by using the finite element method to examine the growth rates of the basic temperature field and its fluctuations with
time. Based on the numerical results, the characteristic times to mark the onset of intrinsic instability, the first detection of convective motion
and the ensuing manifestation of @ewtion are illustrated by a set oéw parameters suggested here. The latter two characteristic times are
discussed in comparison with the experimental data available in the literature.
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1. Introduction state. Morton [3], Foster [4], Jhaveri and Homsy [5], Tan and
Thorpe [6], and Choi et al. [7,8] conducted the related insta-

Natural convection is encountered in a variety of indus- bility analysis by using, respectively, the frozen-time model,
trial systems involving heat and mass transfer, as well as in amplification theory, stochastic model, maximum-Rayleigh
nature. The related convective instabilities have been investi-number criterion, and propagation theory.
gated extensively since the beginning of the 20th century [1, In the present study, the onset of convective motion in an
2]. But, in a rapidly developing and nonlinear temperature initially quiescent and stably stratified fluid layer between
field the related instability phenomenon still remains unre- two horizontal plates is anated. This specific problem was
solved because of its inherent complexity. analyzed based on the ampldtion theory by Ueda et al.

In horizontal fluid layers heated rapidly from below buoy- [9], who measured the detection time by flow visualiza-
ancy-driven convection appears at a certain time. In suchtion and also temperature measment. Kim et al. [10] an-
transient systems it is important to predict the characteris- alyzed the same problem based on the propagation theory,
tic time, 7., to mark the onset of convective instability, i.e., which deals with the instability problems of developing and
intrinsic instability. For times > 7., dangerous instabili-  nonlinear temperature profiles for large Rayleigh numbers.
ties can grow until the first convective motion is detected at It has been shown that for large-Prandtl systems the exper-
t =tp. Then, an undershoot timg,, in the plot of the heat-  imental undershoot time is approximately four times larger
ing rate versus time will be observed, which indicates the than the predicted critical time for the onset of the fastest
deviation of the Nusselt number from that in the conduction growing |nstab|||ty But, the above ana|yses based on the

amplification and the propagation theories require a further
~* Corresponding author, Fax: 82-2-888-7295. justification. Accordingly, in the present study we have em-

E-mail addressckchoi@snu.ac.kr (C.K. Choi). ployed the finite element methdBEM) to identify the char-
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Nomenclature

a dimensionless horizontal wavenumber
amplitudes of temperature and velocity
fluctuations

=Ty =T e K

u dimensionless velocity vectos ui + vj + wk
U velocity vector ....................... 812
w dimensionless vertical velocity

x,y,z dimensionless Cartesian coordinates

Eo energy identity of mean fields
E1q energy identity of fluctuations
H thickness of the fluid layer ................ m
Nu Nusselt number
p dimensionless pressute, P H2/(pa?)
P dynamicpressure .................... N2
Pr Prandtl number= v/«
Ra modified Rayleigh number,

= gB(Ty — T H®/(av)
ro temporal growth rate of mean fields
r1 temporal growth rate of fluctuations
S area of the bottomplate .................. 2m
t tiMe s
T temperature............ K
Tp temperature of the bottomplate ............ K
T; initial temperature of the bottom plate ... ... K
T, temperature of the upperplate ............. K
AT step change in the bottom temperature,

Z verticaldistance.......................... m
Greek symbols
o thermal diffusivity .. ................. st
B thermal expansion coefficient............ K
AT thermal penetrationdepth ................. m
y temperature ratio= (T, — T;) /(T — T;)
v kinematic viscosity . ................. o
0 dimensionless temperatuee (T — T;) /AT
0 fluddensity........................ kg3
T dimensionless times at/ H?
195 dimensionless detection time of motion
T dimensionless time when reaches
the maximum
Ty dimensionless undershoot time
Subscripts
c critical state
D detection
rms root-mean-square quantity
0 basic state of conduction
1 perturbed state
normalized fluctuation
Superscripts
* amplitude function or propagation theory
! fluctuation

acteristic timegr,, tp, t,) to a certain degree in comparison
with the experimental results of Ueda et al. [9].

2. Onset of convective instability

The system considered here is an initially stably-stratified

horizontal fluid layer of thicknesH , as shown in Fig. 1. For

timest < 0, the conduction field has a linear temperature

profilewithT =T7; atZ =0andT =T, atZ = H. The fluid
layer is heated from below to a higher temperafyé> T;)

at Z =0 for t > 0. The important parameters describing
the present system are the Prandtl nunfrerthe modified
Rayleigh numbeRa, and the temperature ratip. For a
high AT (=T, — T;), the nonlinear developing temperature

zft
X T

Fig. 1. Temperature profiles in conduction state.

profiles of the conduction regime are formed and then a
buoyancy-driven convection sets in at a certain time. The
governing equations of the flow and temperature fields in the
convection regime can be expressed in dimensionless form
with the Boussinessq approximation as follows:

V.-u=0 )
d N
(8_ +u-V>u=—Vp+PrV2u+PrRa9k 2)
T
9 2
— +u-V|e=V2 (3)
T
with the boundary conditions,
d
u="20, 9=1 atz=0 (4a, b)
9z
au
u=a—=0, 6=y atz=1 (5a, b)
Z

wheref, p, T, andu denote, respectively, the dimensionless
forms of the temperatur®, the dynamic pressurg, and
the velocity vectorU. Here, k represents the vertical unit
vector, the fluid density used is the value & = T7;, and
the dimensionless Cartesian coordinatesy, z) have the
scale ofH.

As it is well known, at the fully-developed state thermal
convection exists foRa(1 — y) > 1708 withy < 1. For
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y =1, the fully-developed state becomes an isothermal one.3.2. Averaged equations and fluctuations

For y > 1, the upper boundary temperature is higher than

the lower one and, thereforegipient motion will disappear The velocity and temperature fields can be described by

ast — oo. But, for a largeRathe transient motion sets in at ,

a certain time. u=(u)+u )
For a low Ra the incipient convective instabilities are ¢ = (9) + ¢’ (8)

well illustrated by the propagation theory, which model em- ] ) L
ploys the normal-mode analysis under linear theory. Infin- Where(:) denotes the horizontal means, withands’ being

itesimal disturbances are assumed to exhibit the horizontalthe velocity and temperature éwations, respectively. With
periodicity, and the dimensionless vertical velocity distur- their extremely small values, they lead to and 61 in
bancew; and the dimensionless temperature disturbaqce EQ- (6), and itis known thau) = 0.

can be expressed as Fp_r _the pre;gnt time—dependent problem the sele_ction of
the initial conditions is very impdant. The two-dimensional
[wi(z,x,y,2),61(t, x. y,2)] fluctuations are assumed to show periodic patterns like
= [wi(z, 2), 05 (r. 2) | expli (axx + ayy)] 6)  Ea.(6):

wherei is the imaginary unit and the dimensionless hori- [9’, u’] ~ [A(f)g*(z), B(r)u*(z)]exp{i(ay)]
zontal wavenumbes has the relation ofi = [a2 + a2]*/2. for0< <1 ©)
The propagation theory is based on the assumption that in S
deep-pool systems the incipient temperature disturbancesvhereA and B are the amplitudes. He. andu, repre-
are propagated mainly within the thermal penetration depth sent the normalized temperature and velocity fluctuations,
Ar atthe onset time of thermal instability. Therefore, all the respectively. The initial conditions constructecrat 0 are:
variables and parameters having the length scale are rescaled’ = A(0)6,(z) coSay), v = B(0)(dwx(z)/dz)asin(ay)
with Ar. The self-similar transformations are forced and, andw’ = B(0)ws(z) coSay), whereA(0) and B(0) are the
therefore, the stability criteria are obtained easily. For the initial amplitudes of the fluctuations. The calculations were
present system, the resulting anda.-values have beeniil- initiated with the stability criteria obtained from the propa-
lustrated by Kim et al. [10]. In the present study, their gation theory [10]. But, it was assumed thatz) andw,(z)
values are referred to}. Since this model does not pro- would not change during € = < 7., which means that the
vide 7p, or 7,, explicitly, we have employed the numerical unique disturbance patterns are decided with the converged
method here. t.-value during O< t < 7, by iterating the calculations with
the newly obtained patterns. Since we do not know the actual
initial conditions, the numerical quantities fer< . may
3. Numerical smulation not represent the actual phenomena, but the critical ones at
T = 7. Should be valid.
3.1. FEM
) ] ~3.3. Onset of intrinsic instability
We have solved the governing equations (1)—(3) by using
the Galerkin finite element method, and only considered a
two-dimensional cellular motion with horizontal periodicity.
Accordingly, one convection cell was chosen, the side

Based on the above notations of velocity and temperature
fields, the energy identities can be expressed as

boundaries of which were assumed to have stress free,, 1 2 2 2 2

and adiabatic conditions describing the horizontally infinite 0= 2/(<u> + )7+ ()" +bPrRag) )dV (10)
layer. The penalty function method was applied to solve v

the pressure velocit_y coupling, where the pressure andElz}/(u’2+u’2+w/2+bPrRa9’2)dV (11)
the continuity equation are related by the relatipn= 2

—A(0v/dy + dw/0z). To satisfy the convergence condition, v

the penalty number was fixed toPr x108. In order to solve ~ where Eq is the energy identity of the mean fields, and
this transient problem, the implicit predictor/multicorrector Ej is that of its fluctuations, which are function of time
algorithm associated with the Newton—Raphson scheme wasonly. Furthermore} represents the volume of the system
adopted and the first-order time increment was used. Theconsidered. In the energy method, which has been well
number of elements was 4036 and finer meshes were used illustrated by Joseph [11]) = 1 is usually adopted. In
near the top and bottom boundaries to guarantee the physicabrder to observe the time-dependent behavior of thermal
validity. Also, to ensure the numerical stability, a time step convection, the following temporal growth rates of the above
of At = 10~° was used. In the associated Newton—Raphson energy identities are defined:
scheme, the convergence was assumed when the norm of 12
residuals and correctors was smaller than®Lét each time 1 dE,
ste 0= 15 g, (12)

p- E, dr
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1/2 . : . .
o 1 dEl/ (13) the nonlinear ones. The related equations are described in
1= EV? dr detail in the work of Kim et al. [10].

For Pr — oo, the kinetic energy in Egs. (10) and (11)
is relatively very small and, therefore, the temporal growth 4 Reqults and discussion
rates of the energy identities reduce to

1 d{®)ms The numerical simulation results by the FEM with —
0= o dr (14) oo and A(0) = 10~2 are reported here. Based on Egs. (14)
1 do’ and (15), the stability criteriatsatisfy the condition (16) are
r= /_ﬂs (15) assumed to represent the fastest growing, two-dimensional
bims dt instability in the form of regular cells.

where the subscript ‘rms’ refers to the root-mean-square For Ra= 10°, the growth behavior of fluctuations is
guantity. These quantities may be called the growth ratesshown in Fig. 2. For smalk, w;,s and 6;,,s have each

of the averaged temperature and that of temperature fluctu-almost the same magnitudes as their initial ones. But starting
ations. Similarly, we definev;,,s as the root-mean-square from a certain time, they experience a sudden increase to a
guantity ofw’. The amplification factor in the amplification =~ maximum before they decrease with time. Wjtk= 0.6, the

theory is usually defined as the ratio of,,s to its initial growing process is delayed but the earlier behaviof/gf
value. is almost the same as that pf= 0. Mahler and Schechter
Here, we suggest that the critical condition of the onset of [12] mentioned that a reasdsla choice of initial conditions
intrinsic instability is represented by would be a representation in which there is no tendency for
r=ro atr=r, (16) the initial velocity perturbation to either grow or decay. The

present results are supported to a certain degree by their
which means that the characteristic cellular motion ef a. statement.

that would satisfy equations (9) and (16) would setin atthe  The typical temporal behavior given by Eqgs. (14)—(17)
converged earliest time.. It should, however, be noted that are illustrated in Figs. 3 and 4. The condition (16) yields
the stability criteria from the propagation theory satisfy the 7. =3.18 x 103 anda, = 10.1 for Ra= 10° andy = 0.6,
condition ofr1 = rg att = . With y =0, ro approaches  as shown in Fig. 3. The;-value reaches the maximum at
1/(47) for t — 0. The system is assumed stable with< rg T = 1. Up to this characteristic time the results obtained
but unstable; > rg. In the frozen-time model, the systemis from the linear theory are almost the same as the present
stable withr; < 0 and the thermal instability sets in with ones. Even aftet = t,,, the formerri-value continues to

rp=0. increase with time. The correspondingvalues are seen
in Fig. 4. The above figures show that the characteristic
3.4. Undershoot time times increase ith decreasingRa Sincer,, < 7, ensuing

convection is observed at= t,,.
In the present study, the Nusselt number is defined as A peculiar behavior, however, is shown in Fig. 5. With

follows: Ra= 15000 andy = 0.9, the growing thermal instability
1 a0
Nu:-/(-—) ds a7 10° ——
SS 9z /.0 Ra=10° %
10° -

[ —— =0 (a=8.04)

where § is the surface area of the bottom plate and the
characteristic length is the layer degith When heat transfer 10'fp ~77 7 r=06 (@=10.1)
is controlled by conduction only\Nu approachegl — y)
ast — oo. But with strong convectionNu deviates from
its conduction solution and has a minimumrat 7, The
undershoot timez,, is frequently used as the characteristic
time to represent detection of convection regime. 2

’
er'ms

rms >

3.5. Simulation

With the initial temperature amplitude of(0) = 102,
the present system was simulated numerically for a given .
Raandy with Pr — oco. The aboveA(0)-value yields the 10
maximum w- and theNu-values, which agree well with
the available experimental data for the fully developed state
for Ra< 10* with y = 0. Also, the linearized governing  Fig. 2. Temporal behavior of temmure and velocity fluctuations. At
equations were solved and the results were compared withr =, thery-value is the maximum.
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Ra=10’
————— Ra = 15000
so0 b 7 =1.98x10” 1
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5
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1 3180”1 =216x107 /
conduction ]
() S Y
10° 10° 10"
T

Fig. 3. Temporal growth rates with time., onset time of intrinsic
instability; T, detection time of convective motides ¢, ).

102: et Ty T ———r—r
3 y=0.6

Ra=10"
----- Ra=15000 1
7=2.16x10"

for Ra=15000

< 7=3.18x10” o]
= s Rl . 7=1.28x10" ]
or Ka— S
£=2.15x10° l
10° F “ R4 3
conduction
10—' - ...|3 ...|2 sl
107 10° 10° 10"
T

Fig. 4. Nusselt number versus timg:, onset time of intrinsic instability;
74, Undershoot time.

sets in atr = 5.4 x 1072, It first grows and then decays
with time. Finally, convective motion disappearstas> co.

It is noted that withy = 0.9, ast — oo, Ral — y) =
1500, which is smaller than the well-known critical Rayleigh
number 1708, antllu= 1 — y. The value 1708 is obtained
by using the temperature differen€g — T, instead ofAT

in the modified Rayleigh number. Up to= 1.0, the linear
theory yields almost the sama-value as that from the
nonlinear equations, as shown in Fig. 5. In this cagés not
clear in the plot oNuvs. 7, wherer, becomes meaningless.
The temporal behaviors af;,, andd,,s are shown in Fig. 6,
with which the maximum magnitudes ef and¢’, i.e.,wpax
and 6/,

max’
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40 L | AL LA |

Ra=15000
y=0.9
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7=5.4x10"

20 J
present prediction |
~~~~~~~ linear theory
_40 PR M W | s a2l L
10° 10° 10" 10°

T

Fig. 5. Peculiar behavior of temporal growth rates foe= 0.9, wherein
Ral—y) < 1708.
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10 ... Jmax . ]
107 W T

10° e Do

10"

— 2N e
10° r=5.4x10 ,
rm:7.4><10
10° F i
Ra=15000
107 | |
y=0.9

| n
10 rms value

10°F - maximum magnitude .
-10 N PSR | I el -
s 10” 10" 10°

T

Fig. 6. Peculiar behavior of fluctuations fer= 0.9. Theri-value is the
maximum atr = t,.

fluctuations at = 103 is a little larger than that at = .,
the domain ofr1 < rg is here said to be stable. The strange
behaviors ofwy,s andé;,,s at the earlier stage are also seen
for Ra=10° andy = 0.6 in Fig. 2. It is known that the
present simulation becomes valid as> z.. For Pr — oo,
the effect of the initial velocity magnitude(0) in Eq. (9) on
. anddy is not significant.

With increasingy, the t,,/17.-value decreases but the
7, /Tc-ratio increases. Comparing theg,-value in Fig. 3

are compared. It is known that their trends are with that in Fig. 5, we suggest thap = 7,, because the

almost the same. Even though the maximum magnitude ofresult from the linear theory deviates from the nonlinear one



822

120

expeﬁments for Pr> 3000 :
e 7 Uedaetal [9] “ 4 .
100F o z,  Inoueetal. [13] % 7

F predictions for Ra = 15000

80 |- r: propagation theory [10] -

v, 7,7 present study

¢

2/3
tRa

0
0.00 0.01 0.02

yRa

0.03 0.04

-1/3

Fig. 7. Comparison of predictions wittvailable experimental data, wherein
. < T < Ty Te Onset time of intrinsic instabilityt,,, undershoot time. At
T = 1, theri-value is the maximum.

neart = t,, in the former case. This means that convective
motion can be detected earlierat 1p (< 7).

Ueda et al. [9] measuret)-values by using aluminum
powders fory = 0.73-167, Pr = 8800 andRa = 9000—
17000, as shown in Fig. 7. Their predictions from the ampli-
fication theory agree reasonably well with their experimen-
tal data, but their amplification factor is not a decisive one.
The experimental data of Inoue et al. [13] fo= 0 are also

C.K. Choi et al. / International Journal of Thermal Sciences 43 (2004) 817-823

0.5 v T T T T T
Ra = 15000
0.4 - present prediction .
------ propagation theory
e Ueda et al.'s [9] experiments
03 F -

00 n 1 " 1 n 1
0.00 0.01 0.02 0.03

0.04
y Ra®

Fig. 8. Comparison of critical wavenumbers between numerical and
experimental data.

temperature fields. Thereforéget present simulation results
are not valid before definitive fluctuations appear. When
fluctuations grow while the basic field is growing more
rapidly, then fluctuations wuld appear to be decaying. This
concept supports the insiiity criterion (16). From the
above considerations it is stated that the results from the
present model are valid fot, < t < t,. For extremely
smallPr systemsy;, would not be represented by Eq. (15)
since the effect of the kinetic energy on becomes

shown in Fig. 7. The above experimental environments may dominant. Therefore, this equation should be used for large-

be considered as those Bf — co. The predictions of Kim
et al. [10] represented by is located neat.. This means
that for Ra< 15000 the stability criteria from the propa-

Pr systems. It is stressed that at= 7. the convective
instability driven by thermal noises is rarely detectable by
eye and should grow until convective motion is detected at

gation theory are almost the same as the present ones. Buty = 7. The convective motion is related to the velocity

it is noted that with increasin®a the difference between

fields. Therefore, it seems thap is decided by the kinetic

these two predictions becomes relatively larger. Foster [14] energy identity § = 0 in Eqg. (11)). ForPr — oo, the ri-

suggested the relation of, = 4z, which agrees reasonably
well with 7, andx,, for yRa 1/3 < 0.02. With increasing
for 0.6 < y < 1, therp- andr,-values decrease and the dif-
ference between. andt, becomes larger. In thig-range,

it may be stated that, for a givdRa, convective motion is
detected earlier with increasing. This peculiar behavior
supports the relation ofp = 1,,. The presenti.-value is
compared with the experimaitvalue of Ueda et al. [9] and

that from the propagation theory in Fig. 8. The agreement is

good because the-effect on the cell size is not significant
for Ra= 15000.

The present.-value does not vary for a given setieg,
Pr and y values but ther,,- and r,-values decrease with
increasing thed (0)-value fory = 0. The present simulation
with A(0) = 10~2 seems to reasonably represent actual
processes of largBr for t > 7, (see the case gf =0 in
Fig. 7). But we do not know what kind of initial conditions
exist att = 0. It is believed that thermal instabilities are

behavior withb = 0 is almost the same as the thermal
one. For smallPr, the kinetic effect would be decisive in
detection of convective motion. The decision of thgalue
for a finite Pr requires a further justification.

5. Conclusion

For Pr — oo, the critical time to mark the onset of
convective instability in the conduction regime shown in
Fig. 1 has been investigated by using the FEM witt®) =
10-3. This A(0)-value produces the,-value in agreement
with the experimental one foRa> 10° with y = 0. It is
suggested that in the present system a fastest growing mode
of regular cells would set in at = 7. with ro = r1. Herez,
has been called the onset time of intrinsic instability because
it is invariant, which is independent of th&(0)-value, for
a given set of values oRa Pr and y. Since the linear

triggered by thermal noises. These microscopic noises will theory is applied up ta = 1, (< 7,), manifest convection
appear as fluctuations of the macroscopic velocity andis surely observed at = t,. But convective motion can
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be detected earlier at = 7p (< t,) and, therefore, we
suggest thatp = t,,. For Ra= 15000 andPr — oo, the
7,,-vValue has the maximum negr= 0.6 which is consistent
with the available experimental data. Foi60< y < 1, it

is known that ther,, /t.-value decreases with increasing
y. The present numerical sidation follows the actual
phenomena reasonably well for< r < t, and clarifies the
meaning ofr., tp andr, to a certain degree.
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